Skip to main content

C++ of the Day #4 - Changing const object

Question

오늘은 별로 흥미진진한 내용은 아니네요. 역시 뉴스그룹에서 가져왔습니다. ((comp.lang.c++.moderated:prog output?))
#include "iostream.h"

void main(void)
{
  const int i = 10;
  int *p;
  p = const_cast(&i);
  *p = 111;
  cout << i << "  " << *p;
}
/*
output:
10  111 
*/
질문은...
  1. 왜 i 와 *p의 출력이 다르게 나오는가?


Answer

뉴스그룹의 친절한 답변자들 모두 답에 앞서 코드에 있는 문제들을 지적하네요.
  1. 표준 헤더를 쓸 생각이었다면 iostream.h가 아니라 iostream을 써야 할것이다.
  2. 또한 표준 헤더라면 <>괄호를 사용하여야 한다.
  3. main의 리턴 타입은 int이다.
모두 적용하면 다음과 같이 되겠군요.
#include 

int main()
{
  const int i = 10;
  int *p;
  p = const_cast(&i);
  *p = 111;
  std::cout << i << "  " << *p;
}
진짜 중요한 문제의 답은 간단합니다.
const 객체를 수정하는 코드의 결과는 정의되어 있지 않으므로(undefined behavior) 컴파일러는 위 프로그램에서 어떤 값이라도 출력할 수 있습니다.
너무 간단하죠? 참고로 undefined behavior에 대해 얼마전 DDJ에 올라온 Pete Becker의 Living By the Rules에서 인용해봅니다.
Violations of semantic rules that are not diagnosable semantic rules result in undefined behavior; that is, the C++ Standard doesn't impose any requirement on what a compiler does when faced with such code. When referring to this, please don't use the abominable wording "This program invokes undefined behavior." The correct phrasing is "The behavior of this program is undefined." And please keep in mind that undefined behavior means only that the C++ Standard doesn't say what the code in question does. It does not mean that compilers are obliged to do nasty things like set fire to your hard drive. Often, the best way to write code that takes maximal advantage of the hardware it will run on is to use code constructs whose behavior is undefined, but well understood. For example, if you really need speed, instead of testing whether an integer value is greater than or equal to zero and less than some upper limit, you can convert it to an unsigned integer type with the same number of bits and test whether the result is greater than the upper limit. On most architectures, converting the value doesn't change any bits, so it doesn't require any code; negative values are simply treated as large unsigned values, which will always exceed the limit. The behavior of that code is formally undefined, but it works. Except when it doesn't. Test for it.
마지막 부분에 있는 undefined behavior의 사용예를 보니 간단하면서도 아이디어가 좋네요. 실제로는 가독성이라던가 유지 보수성을 감안했을땐 사용하지 않는게 좋겠죠? :-)

Comments

Popular posts from this blog

1의 개수 세기 - 해답

벌써 어제 말한 내일이 되었는데 답을 주신 분이 아무도 없어서 좀 뻘쭘하네요. :-P 그리고 어제 문제에 O(1)이라고 적었는데 엄밀히 얘기하자면 O(log 10 n)이라고 적었어야 했네요. 죄송합니다. ... 문제를 잠시 생각해보면 1~n까지의 수들 중 1의 개수를 얻기 위해서는 해당 숫자 n의 각 자리의 1의 개수가 모두 몇개나 될지를 구해서 더하면 된다는 사실을 알 수 있습니다. 예를 들어 13이라는 수를 생각해 보면 1~13까지의 수에서 1의 자리에는 1이 모두 몇개나 되는지와 10의 자리에는 모두 몇개나 되는지를 구해 이 값을 더하면 됩니다. 먼저 1의 자리를 생각해 보면 1, 11의 두 개가 있으며 10의 자리의 경우, 10, 11, 12, 13의 네 개가 있습니다. 따라서 2+4=6이라는 값을 구할 수 있습니다. 이번엔 234라는 수에서 10의 자리를 예로 들어 살펴 보겠습니다. 1~234라는 수들 중 10의 자리에 1이 들어가는 수는 10, 11, ..., 19, 110, 111, ... 119, 210, 211, ..., 219들로 모두 30개가 있음을 알 수 있습니다. 이 규칙들을 보면 해당 자리수의 1의 개수를 구하는 공식을 만들 수 있습니다. 234의 10의 자리에 해당하는 1의 개수는 ((234/100)+1)*10이 됩니다. 여기서 +1은 해당 자리수의 수가 0이 아닌 경우에만 더해집니다. 예를 들어 204라면 ((204/100)+0)*10으로 30개가 아닌 20개가 됩니다. 이런 방식으로 234의 각 자리수의 1의 개수를 구하면 1의 자리에 해당하는 1의 개수는 ((234/10)+1)*1=24개가 되고 100의 자리에 해당하는 개수는 ((234/1000)+1)*100=100이 됩니다. 이들 세 수를 모두 합하면 24+30+100=154개가 됩니다. 한가지 추가로 생각해야 할 점은 제일 큰 자리의 수가 1인 경우 위의 공식이 아닌 다른 공식이 필요하다는 점입니다. 예를 들어 123에서 100의 자리에 해당하는 1의 개수는 ((123/1

std::map에 insert하기

얼마전 회사 동료가 refactoring한 코드를 열심히 revert하고 있어서 물어보니 다음과 같은 문제였습니다. 원래 코드와 refactoring한 코드는 다음과 같더군요. nvp[name] = value; // original code nvp.insert(make_pair(name, value)); // refactored 아시겠지만 위의 두 라인은 전혀 다른 기능을 하죠. C++03에 보면 각각 다음과 같이 설명되어 있습니다. 23.1.2/7 Associative containers a_uniq.insert(t): pair<iterator, bool> inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair indicates whether the insertion takes place and the iterator component of the pair points to the element with key equivalent to the key of t. 23.3.1.2/1 map element access [lib.map.access] T& operator[](const key_type& x); Returns: (*((insert(make_pair(x, T()))).first)).second. 원래 코드는 매번 새 값으로 이전 값을 overwrite했지만 새 코드는 이전에 키가 존재하면 새값으로 overwrite하지 않습니다. 따라서 원래 기능이 제대로 동작하지 않게 된것이죠. 그래서 물어봤죠. "왜 이렇게 했어?" "insert가 성능이 더 좋다 그래서 했지." :-? 사실 Fowler 아저씨는 Refactoring 책에서 refactoring은 성능을 optimizing하기 위한 것이 아니다라

C++ of the Day #9 - Boost.Python 사용하기 #1

Python 은 가장 인기있는 interpret 언어중의 하나입니다. Python의 장점 중 하나는 C/C++ 모듈과 쉽게 연동할 수 있다는 점입니다. 물론 손으로 일일히 wrapper를 만드는 것은 손이 많이 가고 에러를 만들수 있는 작업이나 SWIG 등과 같은 도구를 사용하면 쉽게 python 모듈을 만들 수 있습니다. Boost.Python 은 이런 SWIG와 같이 python 모듈을 쉽게 만들 수 있도록 도와주는 라이브러리로 순수 C++만을 사용한다는 점이 SWIG와 다른 점입니다. 그리고 개인적으로는 Boost 라이브러리에 포함되어 있는 것들이 왠지 좀 더 믿음직스러워서... :-) 이번 글에서는 Boost.Python 문서에 나와 있는 예제 를 가지고 간단하게 python 모듈을 만드는 방법에 대해서 알아보겠습니다. Requirements 리눅스 이 글에서는 리눅스 환경에서의 사용 방법을 설명한다. Boost.Python 라이브러리 (1.33.1) Boost 라이브러리를 다운로드받아 아래와 유사한 명령으로 라이브러리를 빌드한다. bjam -sTOOLS=gcc -with-python install bjam의 --prefix 옵션으로 라이브러리가 설치될 위치를 변경할 수 있다. Python 라이브러리 (2.4.3) Python을 다운로드 받아 빌드하여 설치한다. 위의 경우와 유사하게 configure의 --prefix 옵션으로 설치될 위치를 변경할 수 있다. Write C++ Code 다음과 같이 코드를 작성한다. // greet.cpp #include <stdexcept> char const* greet(unsigned x) { static char const* const msgs[] = { "hello", "Boost.Python", "world!" }; if (x > 2) throw std::range_error("